
Git Workflow Cheat Sheet
Version 1.0

Initializing a Repository

1. Initialize your git folder.

Fetch an existing git repository.

git clone <url> [folder]

OR
Create an empty git repository.

git init [folder]

2. Change into the folder of the repository.

cd <folder>

Making Changes

New features should be developed in a
separate feature branch which is later
merged back into the development branch
(usually named master or main).

1. Switch to the development branch.

git checkout <main/master/...>

2. Get latest changes made by others.

git pull

3. Create a branch with a custom name.

git checkout -b <feature_branch>

4. Make your changes

Committing Changes

After making changes to the code you need
to split them into commits. You can achieve
this by repeating the following process.

1. Check which files you have changed.

git status

2. Restore files you didn't intend to change.

git restore <path>

3. Stage all changes that belong into a
single commit using these commands:

Add/stage complete files.

git add <file/path>

OR
Interactively decide which part of a
file you want to stage.

git add -p [file]

OR
Stage all changes in existing files.

git add -u

4. Double check your staged changes.

git diff --staged [options]

-w Ignore whitespace
changes

--word-diff Compare words, not lines

5. Unstage accidentally staged files (or all).

git reset [path]

�. Commit your staged changes.

Commit with a one-line message.

git commit -m <message>

OR

Type the message in an editor.

git commit

Best Practices
A commit should do one thing. Split
unrelated changes into multiple ones.
Complex features can be developed
first and later split into multiple
commits by using git add -p.
Commit messages should sum up
the change in the first line. The
following lines can be used for
additional context.

Preparing a Merge/Pull Request

1. Verify that all changes were committed.

git status

2. Double check your commit messages.

git log

3. Push your changes to the remote server.

git push -u origin 
<feature_branch>

4. Create a new pull / merge request
(depends on the used DevOps software).

Best Practices
Use the merge / pull request
description to provide all the
necessary information to understand
your changes, e.g. a link to your
task/documentation or a reasoning
why you chose this approach.

Reviewing Code

The things to look out for in a code review
depend on your project. The following tips
can be used as a starting point.

Tips
Does the code solve the task? Did the
author understand the problem?
Is the code difficult to understand?
Would you solve the problem in the
same way? Why not?
Is the implementation maintainable?
Can you spot any shortcuts, missing
validations, edge cases, ...?
Always ask if you don't understand
something.

Fix Your Latest Commit

1. Change the code as desired/requested.

2. Stage all intended changes. Check
Committing Changes for more info.

git add -p

3. Double check your staged changes.

git diff --staged [options]

-w Ignore whitespace
changes

--word-diff Compare words, not lines

4. Add the staged changes to the latest
commit.

git commit --amend

5. Send your modified commit to the server.

git push -f

Fix Any Commit(s) - Rebase

A rebase workflow can be used to make
larger changes to commits or change the
number of commits.

1. Start an interactive rebase with the
development branch as base.

git rebase -i <development_branch>

Replace the word pickup in a line to
modify the commit - or delete the line if
you want to drop the commit.

edit Edit the content of a commit
reword Change commit message only
squash Merge content into previous

commit

2. Git pauses the rebase for each commit
marked for editing. Follow the steps of
Fix Your Latest Commit to modify the
commit. Afterwards continue the rebase.

git rebase --continue

3. In case of a mistake, abort the process
and return to the state before rebasing.

git rebase --abort

4. Send your modified commit to the server.

git push -f

Tips
In case of a conflict: Resolve the
conflicts in the code, stage your
changes and continue the rebase
without committing them. Git will do
this automatically for you.

Fix Any Commit(s) - Fixup

A fixup based workflow is a faster
alternative to rebases if the changes are
small and don't conflict with each other.
See mergeboard.com/fixup.

1. Modify the code to address the feedback.

2. Stage all changes related to one faulty
commit.

git add -p

3. Double check your staged changes.

git diff --staged [options]

-w Ignore whitespace
changes

--word-diff Compare words, not lines

4. Create a fixup commit for it.

git commit --fixup <commit_hash>

The commit_hash needs to point to the
faulty commit you want to edit.

5. Repeat the previous step to create a fixup
commit for each faulty commit.

�. Move the changes from the fixup
commits back into the faulty commits.

git rebase -i --autosquash

You don't have to change anything, just
close the editor. Git knows what to do.

7. Verify that your git history doesn't contain
any fixup commits any more.

git log

�. Send your modified commit to the server.

git push -f

Test Your Commits

It is easy to introduce bugs when editing
the git history. You may therefore want to
test each commit afterwards.

1. Run the tests for each commit and stop
when encountering an error.

git rebase --exec '<test_cmd>' 
<development_branch>

test_cmd depends on your build system.
Any command returning an exit code of
zero on success and a non-zero value on
failure can be used, e.g. make test.

Stashing Changes

If you want to temporarily preserve changes
without committing them, use git stash.

1. Remove changes from your files and
preserve them in the stash.

git stash save [message]

2. List your stashed changes.

git stash list

3. View info about a stashed change.

git stash show [options] 
[stash@{X}]

-p Show code changes instead of file
statistics

4. Apply the specified (or last) stashed
changes back to your files.

git stash apply [stash@{X}]

5. Get rid of the stashed changes if you
don't need them any longer.

Forget the specified (or last) stash.

git stash drop [stash@{X}]

OR
Forget all stashed changes.

git stash clear

Working With Branches

List branches

git branch [options]

-a List local & remote branches
-r List remote branches only
-v Show last commit for each branch

Create a branch without switching to it

git branch <branch-name> [start-
point]

Create a branch and switch to it

git branch -b <branch-name> 
[start-point]

Switch to a branch

git checkout <branch-name>

Switch to your last branch

git checkout -

Delete a branch

git branch -d <branch-name>

Working With Tags

List tags

git tag [options]

-n Show tag annotations

Create a tag

git tag [options] <tag-name>

-m <message> Add annotation
message

Delete a tag

git tag -d <tag-name>

Do You Need More Help?

Check out our workshops at
mergeboard.com/workshops

https://mergeboard.com/fixup
https://mergeboard.com/workshops

